
Deformations of plane curves with nodes

E. Sernesi

1 Nodes

We consider only schemes defined over a fixed algebraically closed field k of
characteristic 6= 2.

Lemma 1.1. Let Y ⊂ A2 be a curve of equation f(x, y) = 0 and let p =
(α, β) ∈ Y . The following conditions are equivalent:

(i) (
f,
∂f

∂x
,
∂f

∂y

)
OA2,p = (x− α, y − β)OA2,p (1)

(ii)
f(x+ α, y + β) = q(x, y) + higher order terms

where q(x, y) = a20x
2 + 2a11xy + a02y

2 factors as a product of distinct
linear forms.

Proof. Exercise.

A point p ∈ Y satisfying the conditions of the Lemma is called a node,
or an ordinary double point, or an A1-singularity. A nodal plane curve is a
plane curve having only nodes as singularities.

A family of affine plane curves parametrized by an affine scheme S =
Spec(R) (or over S) a morphism of the form:

π : Spec (R[x, y]/(f)) −→ S

for some non-constant f ∈ R[x, y]. The morphism π is a family of curves with
nodes (or a family of nodal curves) if all fibres Y(s) over k-rational points
s ∈ S are nodal curves and moreover for every node p ∈ Y(s) the morphism:

Spec

[
OS,s[x, y]

/(
f,
∂f

∂x
,
∂f

∂y

)]
−→ Spec(OS,s)
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is etale at p.

Example 1.2. Let 0 6= c ∈ k and consider the family of plane curves xy +
εc = 0 over D := Spec(k[ε]), where k[ε] = k[t]/(t2). The fibre over the unique
k-rational point (ε) ∈ D is the nodal curve xy = 0. On the other hand:(

xy + εc,
∂(xy + εc)

∂x
,
∂(xy + εc)

∂y

)
= (xy + εc, y, x) = (ε, x, y)

and k[ε, x, y]/(ε, x, y) = k is not flat, hence not etale, over k[ε] (Exercise:
check this). Therefore this is not a family of nodal curves.

The constant family Spec(k[ε, x, y]/(xy)→ D is a family of nodal curves
because

k[ε, x, y]/(xy, y, x) = k[ε]

is etale over itself.

Proposition 1.3. Let f(ε, x, y) = xy+ εg(x, y) ∈ k[ε, x, y]. Then the follow-
ing conditions are equivalent:

(a) f defines a family of nodal curves over D.

(b) g(0, 0) = 0.

(c) f(ε, x, y) = (x+ εα)(y + εβ) for some α, β ∈ k[x, y].

Proof. (c)⇒ (b) is obvious.
(b)⇒ (c): write g(x, y) = αy + βx.
(c)⇒ (a): define a k[ε]-automorphism φ : k[ε, x, y]→ k[ε, x, y] by

φ(x) = x− εα, φ(y) = y − εβ

Then φ(f) = xy and therefore φ induces a D-isomorphism

Spec(k[ε, x, y]/(f) ∼= Spec(k[ε, x, y]/(xy)

and (a) follows from Example 1.2.
(a) ⇒ (b): assume by contradiction that g(x, y) = c + αy + βx with

0 6= c ∈ k. define a k[ε]-automorphism φ : k[ε, x, y]→ k[ε, x, y] by

φ(x) = x− εα, φ(y) = y − εβ

Then φ(f) = xy + εc and φ induces a D-isomorphism

Spec(k[ε, x, y]/(f) ∼= Spec(k[ε, x, y]/(xy + εc)

Therefore f does not define a family of nodal curves, by Example 1.2.
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2 Families of projective plane nodal curves

Let Σd
∼= PN , where N = d(d+3)

2
=
(
d+2

2

)
− 1, be the projective space

parametrizing all curves of degree d in P2. The subset parametrizing curves
having exactly δ nodes is denoted by Vd,δ.

Theorem 2.1 (Severi). Vd,δ is a locally closed subset of Σd smooth of pure
dimension N − δ.

Vd,δ is called the Severi variety of plane curves of degree d with δ nodes.
The proof of this theorem consists in introducing a sub-functor Vd,δ of the
Hilbert functor of plane curves of degree d and proving that this sub-functor
is represented by a nonsingular locally closed subscheme Vd,δ ⊂ Σd. The
definition of Vd,δ is based on the following:

Definition 2.2. A family of projective plane curves of degree d with δ nodes
is a family of projective plane curves

Y
π
��

� � // S × P2

pr
{{

S

such that all fibres are curves of degree d having exactly δ distinct nodes and
π is locally a family of nodal curves as defined in §1.

It is easy to show that this notion is functorial, so that we have a well
defined functor:

Vd,δ : (schemes/k) −→ (sets)

by setting:

Vd,δ(S) = {families of δ-nodal curves of degree d over S}

The proof that Vd,δ is representable can be found in [1], Theorem 4.7.3 p. 257.
We will admit this theorem, and we will concentrate on the local properties
of Vd,δ.
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3 Local properties of Vd,δ
Let C ⊂ P2 be a δ-nodal plane curve of degree d and denote by [C] ∈ Vd,δ the
corresponding point. Let ∆ = {p1, . . . , pδ} be the set of nodes of C. We can
identify the tangent space T[C]Vd,δ with the set of families of δ-nodal curves
parametrized by Spec(k[ε]). Such families belong to T[C]Σd = H0(C,OC(C)).
Let F (X0, X1, X2) = 0 be an equation of C. An element G ∈ T[C]Σd consists
of a family of the form:

F + εG = 0

where G = G(X0, X1, X2) is a homogeneous polynomial of degree d repre-
senting G ∈ H0(C,OC(C)). From Proposition 1.3 it follows that this family
defines an element of T[C]Vd,δ if and only if G ∈ H0(P2, I∆(d)), or equivalently
G ∈ H0(C, I∆ ⊗OC(d)). Therefore:

T[C]Vd,δ = H0(C, I∆ ⊗OC(d))

A simple local calculation shows that the obstructions to the smoothness of
Vd,δ at [C] lie in H1(C, I∆ ⊗OC(d)) (Exercise).

Since I∆ ⊗ OC(d) is not an invertible sheaf at the singular points we
proceed as follows.

Consider the normalization ν : Y → C, and assume for simplicity that C
is irreducible, so that Y is nonsingular connected of genus g =

(
d−1

2

)
− δ. Let

ν−1(pi) = xi + yi, i = 1, . . . , δ. Then

I∆(d)⊗OC = ν∗F

where F := ν∗OC(d)(−
∑

i(xi + yi)). Note that F is an invertible sheaf on
Y of degree

d2 − 2δ = 2g − 2 + 3d

Therefore:

H1(C, I∆(d)⊗OC) = H1(C, ν∗F ) = H1(Y, F ) = 0

and
h0(C, I∆(d)⊗OC) = h0(Y, F ) = N − δ

This concludes the proof of Theorem 2.1.

Note: The curves defined by sections of I∆(d) are the so-called adjoints
to C of degree d.

4



References

[1] Sernesi E.: Deformations of Algebraic Schemes, Springer
Grundlehren b. 334 (2006).

5


