Deformations of plane curves with nodes

E. Sernesi

1 Nodes

We consider only schemes defined over a fixed algebraically closed field k of
characteristic # 2.

Lemma 1.1. Let Y C A? be a curve of equation f(x,y) = 0 and let p =
(a, B) € Y. The following conditions are equivalent:

(1) of of
(f>£7a_y) OAQ,p = (m_aay_ﬁ)OAQ,p (1>
(ii)
flz+a,y+ B) = q(x,y) + higher order terms
where q(x,y) = ax® + 2a112y + agy? factors as a product of distinct
linear forms.

Proof. Exercise. m
A point p € Y satisfying the conditions of the Lemma is called a node,

or an ordinary double point, or an Aj-singularity. A nodal plane curve is a
plane curve having only nodes as singularities.

A family of affine plane curves parametrized by an affine scheme S =
Spec(R) (or over S) a morphism of the form:

7 : Spec (Rlr, yl/ (f)) —

for some non-constant f € R[x,y]. The morphism 7 is a family of curves with
nodes (or a family of nodal curves) if all fibres Y(s) over k-rational points
s € S are nodal curves and moreover for every node p € )(s) the morphism:

Spec {Os,s[x,y]/(f, g—:];, g—;)] — Spec(Ogs)
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is etale at p.

Example 1.2. Let 0 # ¢ € k and consider the family of plane curves zy +
ec = 0 over D := Spec(kle]), where k[e] = k[t]/(#?). The fibre over the unique
k-rational point (€) € D is the nodal curve zy = 0. On the other hand:

O(zy + ec) O(zy + ec)
or ' oy

and kle, z,y]/(e,z,y) = k is not flat, hence not etale, over k[e] (Exercise:
check this). Therefore this is not a family of nodal curves.

The constant family Spec(kle, z,y]/(xy) — D is a family of nodal curves
because

(xy + ec, ) = (zy +ec,y,z) = (¢,2,9)

ke, z,y]/(zy,y, x) = Kle]
is etale over itself.

Proposition 1.3. Let f(e,z,y) = vy +eg(z,y) € K[e,x,y]. Then the follow-
ing conditions are equivalent:

(a) f defines a family of nodal curves over D.
(b) 9(0,0) =0.

(c) fle,z,y) = (x + ea)(y + €B) for some «, 5 € k|x,y].
Proof. (¢) = (b) is obvious.

(0) = (c): write g(z,y) = ay + Bz.
(¢) = (a): define a k[e]-automorphism ¢ : k[e, x, y] — K¢, x, y] by

o) =z —ea, ¢(y)=y—ep
Then ¢(f) = zy and therefore ¢ induces a D-isomorphism
Spec(kle, z,y]/(f) = Spec(kle, z, y|/(xy)

and (a) follows from Example 1.2.
(a) = (b): assume by contradiction that g(x,y) = ¢ + ay + fx with
0 # ¢ € k. define a kle]-automorphism ¢ : k[e, z, y] — ke, z, y] by

p(x) =z —ea, Py)=y—eB
Then ¢(f) = zy + ec and ¢ induces a D-isomorphism

Spec(kle, z, y]/(f) = Spec(kle, z, y]/ (zy + €c)

Therefore f does not define a family of nodal curves, by Example 1.2. O
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2 Families of projective plane nodal curves

Let ¥y = PY, where N = d(d;?’) = (d;rz) — 1, be the projective space
parametrizing all curves of degree d in P2, The subset parametrizing curves

having exactly ¢ nodes is denoted by V.

Theorem 2.1 (Severi). Vs is a locally closed subset of X4 smooth of pure
dimension N — 0.

Vi is called the Severi variety of plane curves of degree d with 6 nodes.
The proof of this theorem consists in introducing a sub-functor V45 of the
Hilbert functor of plane curves of degree d and proving that this sub-functor
is represented by a nonsingular locally closed subscheme V;s5 C ¥4. The
definition of Vs is based on the following:

Definition 2.2. A family of projective plane curves of degree d with § nodes
15 a family of projective plane curves

Y——s S x P?

| A

S

such that all fibres are curves of degree d having exactly 0 distinct nodes and
7 18 locally a family of nodal curves as defined in §1.

It is easy to show that this notion is functorial, so that we have a well
defined functor:
Vs @ (schemes/k) — (sets)

by setting:
Vas(S) = {families of -nodal curves of degree d over S}

The proof that V4 5 is representable can be found in [1], Theorem 4.7.3 p. 257.
We will admit this theorem, and we will concentrate on the local properties
of Vd,é-



3 Local properties of V;;

Let C' C P? be a d-nodal plane curve of degree d and denote by [C] € Vy 5 the
corresponding point. Let A = {py,...,ps} be the set of nodes of C. We can
identify the tangent space Tjc)Vas with the set of families of d-nodal curves
parametrized by Spec(k[e]). Such families belong to Tjc1Xq = H°(C, Oc(C)).
Let F(Xo, X1, X3) = 0 be an equation of C'. An element G e Tic)2q consists
of a family of the form:

F+eG=0

where G = G(Xo, X1, X3) is a homogeneous polynomial of degree d repre-
senting G € H°(C, O¢(C)). From Proposition 1.3 it follows that this family
defines an element of TV, 5 if and only if G € H(P?,Zx(d)), or equivalently
G € H(C,Za ® Oc(d)). Therefore:

Tie)Vas = H°(C,Za @ Oc(d))

A simple local calculation shows that the obstructions to the smoothness of
Vis at [C] lie in H'(C,Za ® Oc(d)) (Exercise).

Since Zp ® O¢(d) is not an invertible sheaf at the singular points we
proceed as follows.

Consider the normalization v : Y — C, and assume for simplicity that C
is irreducible, so that Y is nonsingular connected of genus g = (d;) —9. Let
v i(p) =z +y,i=1,...,5. Then

IA<d) ® Oc = v, F

where F':= v*Oc(d)(—)_,(z; + y;)). Note that F' is an invertible sheaf on
Y of degree
d>—26 =29 —2+3d

Therefore:
HY(C,IA(d) ® O¢) = HY(C, v, F) = H' (Y, F) =0

and

R(C,Ia(d) @ Og) = h°(Y,F) =N —§
This concludes the proof of Theorem 2.1.

Note: The curves defined by sections of Ia(d) are the so-called adjoints
to C' of degree d.
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