Deformations of plane curves with nodes

E. Sernesi

1 Nodes

We consider only schemes defined over a fixed algebraically closed field **k** of characteristic $\neq 2$.

Lemma 1.1. Let $Y \subset \mathbb{A}^2$ be a curve of equation f(x, y) = 0 and let $p = (\alpha, \beta) \in Y$. The following conditions are equivalent:

(i)

$$\left(f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \mathcal{O}_{\mathbb{A}^2, p} = (x - \alpha, y - \beta) \mathcal{O}_{\mathbb{A}^2, p}$$
(1)

(ii)

 $f(x + \alpha, y + \beta) = q(x, y) + higher order terms$

where $q(x, y) = a_{20}x^2 + 2a_{11}xy + a_{02}y^2$ factors as a product of distinct linear forms.

Proof. Exercise.

A point $p \in Y$ satisfying the conditions of the Lemma is called a *node*, or an *ordinary double point*, or an A_1 -singularity. A nodal plane curve is a plane curve having only nodes as singularities.

A family of affine plane curves parametrized by an affine scheme S = Spec(R) (or over S) a morphism of the form:

$$\pi: \operatorname{Spec}\left(R[x, y]/(f)\right) \longrightarrow S$$

for some non-constant $f \in R[x, y]$. The morphism π is a *family of curves with* nodes (or a *family of nodal curves*) if all fibres $\mathcal{Y}(s)$ over **k**-rational points $s \in S$ are nodal curves and moreover for every node $p \in \mathcal{Y}(s)$ the morphism:

$$\operatorname{Spec}\left[\mathcal{O}_{S,s}[x,y] \middle/ \left(f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)\right] \longrightarrow \operatorname{Spec}(\mathcal{O}_{S,s})$$

is etale at p.

Example 1.2. Let $0 \neq c \in \mathbf{k}$ and consider the family of plane curves $xy + \epsilon c = 0$ over $D := \operatorname{Spec}(\mathbf{k}[\epsilon])$, where $\mathbf{k}[\epsilon] = \mathbf{k}[t]/(t^2)$. The fibre over the unique **k**-rational point $(\epsilon) \in D$ is the nodal curve xy = 0. On the other hand:

$$\left(xy + \epsilon c, \frac{\partial(xy + \epsilon c)}{\partial x}, \frac{\partial(xy + \epsilon c)}{\partial y}\right) = (xy + \epsilon c, y, x) = (\epsilon, x, y)$$

and $\mathbf{k}[\epsilon, x, y]/(\epsilon, x, y) = \mathbf{k}$ is not flat, hence not etale, over $\mathbf{k}[\epsilon]$ (Exercise: check this). Therefore this is not a family of nodal curves.

The constant family $\operatorname{Spec}(\mathbf{k}[\epsilon, x, y]/(xy) \to D$ is a family of nodal curves because

$$\mathbf{k}[\epsilon, x, y]/(xy, y, x) = \mathbf{k}[\epsilon]$$

is etale over itself.

Proposition 1.3. Let $f(\epsilon, x, y) = xy + \epsilon g(x, y) \in \mathbf{k}[\epsilon, x, y]$. Then the following conditions are equivalent:

- (a) f defines a family of nodal curves over D.
- (b) g(0,0) = 0.

(c)
$$f(\epsilon, x, y) = (x + \epsilon \alpha)(y + \epsilon \beta)$$
 for some $\alpha, \beta \in \mathbf{k}[x, y]$.

Proof. $(c) \Rightarrow (b)$ is obvious.

 $\begin{array}{l} (b) \Rightarrow (c): \text{ write } g(x,y) = \alpha y + \beta x. \\ (c) \Rightarrow (a): \text{ define a } \mathbf{k}[\epsilon] \text{-automorphism } \phi: \mathbf{k}[\epsilon,x,y] \rightarrow \mathbf{k}[\epsilon,x,y] \text{ by} \end{array}$

$$\phi(x) = x - \epsilon \alpha, \quad \phi(y) = y - \epsilon \beta$$

Then $\phi(f) = xy$ and therefore ϕ induces a *D*-isomorphism

$$\operatorname{Spec}(\mathbf{k}[\epsilon, x, y]/(f) \cong \operatorname{Spec}(\mathbf{k}[\epsilon, x, y]/(xy))$$

and (a) follows from Example 1.2.

 $(a) \Rightarrow (b)$: assume by contradiction that $g(x, y) = c + \alpha y + \beta x$ with $0 \neq c \in \mathbf{k}$. define a $\mathbf{k}[\epsilon]$ -automorphism $\phi : \mathbf{k}[\epsilon, x, y] \rightarrow \mathbf{k}[\epsilon, x, y]$ by

$$\phi(x) = x - \epsilon \alpha, \quad \phi(y) = y - \epsilon \beta$$

Then $\phi(f) = xy + \epsilon c$ and ϕ induces a *D*-isomorphism

$$\operatorname{Spec}(\mathbf{k}[\epsilon, x, y]/(f) \cong \operatorname{Spec}(\mathbf{k}[\epsilon, x, y]/(xy + \epsilon c))$$

Therefore f does not define a family of nodal curves, by Example 1.2. \Box

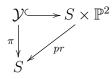
2 Families of projective plane nodal curves

Let $\Sigma_d \cong \mathbb{P}^N$, where $N = \frac{d(d+3)}{2} = \binom{d+2}{2} - 1$, be the projective space parametrizing all curves of degree d in \mathbb{P}^2 . The subset parametrizing curves having exactly δ nodes is denoted by $\mathcal{V}_{d,\delta}$.

Theorem 2.1 (Severi). $\mathcal{V}_{d,\delta}$ is a locally closed subset of Σ_d smooth of pure dimension $N - \delta$.

 $\mathcal{V}_{d,\delta}$ is called the *Severi variety* of plane curves of degree d with δ nodes. The proof of this theorem consists in introducing a sub-functor $\mathbb{V}_{d,\delta}$ of the Hilbert functor of plane curves of degree d and proving that this sub-functor is represented by a nonsingular locally closed subscheme $\mathcal{V}_{d,\delta} \subset \Sigma_d$. The definition of $\mathbb{V}_{d,\delta}$ is based on the following:

Definition 2.2. A family of projective plane curves of degree d with δ nodes is a family of projective plane curves



such that all fibres are curves of degree d having exactly δ distinct nodes and π is locally a family of nodal curves as defined in §1.

It is easy to show that this notion is functorial, so that we have a well defined functor:

$$\mathbb{V}_{d,\delta}: (\text{schemes}/\mathbf{k}) \longrightarrow (\text{sets})$$

by setting:

 $\mathbb{V}_{d,\delta}(S) = \{ \text{families of } \delta \text{-nodal curves of degree } d \text{ over } S \}$

The proof that $\mathbb{V}_{d,\delta}$ is representable can be found in [1], Theorem 4.7.3 p. 257. We will admit this theorem, and we will concentrate on the local properties of $\mathcal{V}_{d,\delta}$.

3 Local properties of $\mathcal{V}_{d,\delta}$

Let $C \subset \mathbb{P}^2$ be a δ -nodal plane curve of degree d and denote by $[C] \in \mathcal{V}_{d,\delta}$ the corresponding point. Let $\Delta = \{p_1, \ldots, p_{\delta}\}$ be the set of nodes of C. We can identify the tangent space $T_{[C]}\mathcal{V}_{d,\delta}$ with the set of families of δ -nodal curves parametrized by $\operatorname{Spec}(\mathbf{k}[\epsilon])$. Such families belong to $T_{[C]}\Sigma_d = H^0(C, \mathcal{O}_C(C))$. Let $F(X_0, X_1, X_2) = 0$ be an equation of C. An element $\overline{G} \in T_{[C]}\Sigma_d$ consists of a family of the form:

$$F + \epsilon G = 0$$

where $G = G(X_0, X_1, X_2)$ is a homogeneous polynomial of degree d representing $\overline{G} \in H^0(C, \mathcal{O}_C(C))$. From Proposition 1.3 it follows that this family defines an element of $T_{[C]}\mathcal{V}_{d,\delta}$ if and only if $G \in H^0(\mathbb{P}^2, \mathcal{I}_{\Delta}(d))$, or equivalently $\overline{G} \in H^0(C, \mathcal{I}_{\Delta} \otimes \mathcal{O}_C(d))$. Therefore:

$$T_{[C]}\mathcal{V}_{d,\delta} = H^0(C, \mathcal{I}_\Delta \otimes \mathcal{O}_C(d))$$

A simple local calculation shows that the obstructions to the smoothness of $\mathcal{V}_{d,\delta}$ at [C] lie in $H^1(C, \mathcal{I}_\Delta \otimes \mathcal{O}_C(d))$ (Exercise).

Since $\mathcal{I}_{\Delta} \otimes \mathcal{O}_C(d)$ is not an invertible sheaf at the singular points we proceed as follows.

Consider the normalization $\nu: Y \to C$, and assume for simplicity that C is irreducible, so that Y is nonsingular connected of genus $g = \binom{d-1}{2} - \delta$. Let $\nu^{-1}(p_i) = x_i + y_i, i = 1, \dots, \delta$. Then

$$\mathcal{I}_{\Delta}(d) \otimes \mathcal{O}_C = \nu_* F$$

where $F := \nu^* \mathcal{O}_C(d)(-\sum_i (x_i + y_i))$. Note that F is an invertible sheaf on Y of degree

$$d^2 - 2\delta = 2g - 2 + 3d$$

Therefore:

$$H^1(C, \mathcal{I}_{\Delta}(d) \otimes \mathcal{O}_C) = H^1(C, \nu_* F) = H^1(Y, F) = 0$$

and

$$h^0(C, \mathcal{I}_{\Delta}(d) \otimes \mathcal{O}_C) = h^0(Y, F) = N - \delta$$

This concludes the proof of Theorem 2.1.

Note: The curves defined by sections of $I_{\Delta}(d)$ are the so-called *adjoints* to C of degree d.

References

[1] Sernesi E.: *Deformations of Algebraic Schemes*, Springer Grundlehren b. 334 (2006).